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The stability of plane Couette flow is examined for liquids in which the viscosity 
varies with depth. Under suitable conditions, the flow may be stable or unstable 
a t  small Reynolds numbers for disturbances with wavelengths long compared 
with the liquid depth. 

A mechanism which may be stabilizing or destabilizing is found to derive from 
the role of diffusion in the neighbourhood of a ‘critical layer’, where the liquid 
velocity equals the phase velocity of a wave-like disturbance. This mechanism, 
which requires a viscosity gradient, is quite distinct from that found by Yih 
(1967) for the case of a viscosity discontinuity. An example is considered, for 
which these two mechanisms may be of comparable importance. 

1. Introduction 
Yih (1967) has examined the stability of plane Couette-Poiseuille flow of two 

superposed liquid layers of different viscosities but equal densities. He found 
that such flows can be unstable at  arbitrarily small Reynolds numbers, the un- 
stable disturbances having wavelengths large compared with the liquid depths. 
As for liquid films flowing down an inclined plane under gravity-see Benjamin 
(1957) and Yih (1954, 1963)-the instability mechanism derives from inertia 
forces, which, though small compared with the viscous forces, nevertheless 
govern the stability of the system. A similar mechanism operates in the recent 
work of Kao (1968) on the stability of two-layer flow down an inclined plane. 
The present paper examines plane Couette flow in which the viscosity may vary 
continuously as well as discontinuously with depth; and a further mechanism 
is revealed which may promote stability or instability. This mechanism does not 
involve inertia forces, but depends for its existence on the presence of a viscosity 
gradient in the fluid. It is therefore quite distinct from that found by Yih. 

In  a recent paper, Craik & Smith (1968) examined the stability of free-surface 
flows with continuous viscosity stratification. Their analysis was based on the 
assumption that the viscosity p of each liquid particle remains constant through- 
out its motion: that is, 

DpIDt’ = 0 ,  

where D/Dt’ denotes the total time derivative. This assumption is likely to be 
a good approximation when the effects of diffusion are slight. However, if the 
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phase velocity of a small periodic disturbance equals the velocity of th.e liquid 
at  some depth, the linearized form of the above equation is singular at this depth. 
The role of such singularities was not considered by Craik & Smith, since their 
analysis concerned only ‘surface waves’ with phase velocities greater than the 
maximum velocity of the liquid. In  contrast, the present work examines a physical 
mechanism which is closely related to these singularities. 

In the vicinity of the ‘ critical layer’ where the liquid velocity equals the phase 
velocity of a wave-like disturbance, it is apparent that diffusion of viscosity (by 
whatever means) may have a significant effect; and that the inclusion of appro- 
priate diffusive terms will remove the singularity mentioned above. Such a pro- 
cedure is like that used to examine the stability of flows at large Reynolds 
numbers (see, for example, Lin 1955), where the ‘ critical-layer’ singularity of the 
inviscid equation of motion may be removed by the inclusion of viscous terms. 
Even more directly relevant is the work of Lees & Lin (1946) on the stability of 
compressible boundary layers; there, the inviscid equation of motion is singular 
a t  the critical layer and so also is the heat equation when thermal diffusion is 
neglected in comparison with convection. The singularity of the latter equation 
is resolved by considering the role of thermal diffusion in the vicinity of the critical 
layer. 

2. The stability problem 
Liquid is confined between two rigid parallel plane boundaries, a distance h 

apart. One boundary is fixed and the other is constrained to move in its own 
plane with a constant velocity V .  The liquid density p is assumed t o  be constant; 
accordingly, gravity has no dynamical effect and the orientation in space of the 
plane boundaries is arbitrary. However, for brevity, the distance normal to the 
fixed boundary will be called the ‘depth’. In  the absence of any perturbation, 
the viscosity of the liquid is a function of this depth only. 

All quantities are made dimensionless with respect to the depth h, the velocity 
V and the density p. Dimensionless co-ordinates (2, y) are chosen such that the 
x-axis is parallel to the direction of motion and the y-axis is normal to the plane 
boundaries. The fixed boundary is located at y = 0 and the moving boundary 
at  y = 1. Dimensionless time is denoted by t and the dimensionless velocity com- 
ponents and pressure by (u, v) and p respectively. 

A dimensionless viscosity rn is defined as 

m(x, y1 t )  = f45, y, t ) / t c O ,  

where p(z, y, t )  is the actual viscosity and ,uo is some constant viscosity which is 
characteristic of the liquid as a whole. Attention is restricted to plane Couette 
flow, for which there is no pressure gradient in the flow direction. Therefore, in 
the absence of any perturbation, there is a uniform shear flow for which the 
primary velocity profile ii( y) and viscosity distribution 6( y) satisfy an equation 
of the form 62 = constant ( = l), (2.1) 
where the prime denotes dldy. Without loss of generality, the characteristic 
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viscosity p0 may be chosen so that this constant equals unity. A Reynolds 
number is dehed  as R = pVh/po. 

In  the absence of any diffusive agent, each liquid particle has a constant 
viscosity, i.e. Dm/Dt = 0. However, as explained in the introduction, the influence 
of a diffusive mechanism, however weak, may be significant for the waves to be 
discussed. For simplicity, we assume that 

DmlDt = KV2m, (2.2) 

where K is a dimensionless coefficient of diffusivity. [In practice, this equation 
may not be strictly correct. For example, if changes in viscosity are the direct 
result of changes in temperature T, the appropriate relations would be the heat 
equation for T, together with an equation denoting the dependence of viscosity 
on temperature. However, such modifications only introduce additional terms 
in the equation for m, which turn out to be unimportant in the present context; 
the effect of diffusion is restricted to the vicinity of the ‘critical layer’ (see $4), 
where the term K(a2m/ay2) is dominant.] 

We now suppose that the primary flow experiences a small two-dimensional 
disturbance which is periodic in the x-direction and which is governed by a per- 
turbation stream function 

$(x, Y, t )  = f ( Y )  r(s7 9, r(z,  t )  = 
such that the velocity components are 

a = U f Y )  +f ’(y) 11, 2, = - iUf(Y) ?I* 

Here a is a real dimensionless wave-number and c is a dimensionless wave velocity 
which may be complex. The corresponding dimensionless viscosity is 

m = ~ ( y )  + &(y)  7. 

We now make the assumptions 

a2 < 1; aR < 1, aRIcI < 1, (2.3 a-c) 

of which ( 2 . 3 ~ )  requires the wavelength of the disturbance to be large compared 
with the depth h, and (2 .3b ,  c) require viscous forces to be large compared with 
inertia forces in the equations of motion. With these assumptions, Craik & 
Smith (1968) have obtained 

(a,’’ + jJ’&)” = 0 (2.4) 

as a first approximation to the linearized equations of motion. To the same 
approximation (i.e. on neglecting terms in a2 by virtue of ( 2 . 3 ~ ) ) ~  (2.2) yields the 
linearized result 

ay = (a- c)  A+ (iK/a)  5 2 .  (2.5) 

The boundary conditions to be satisfied by f ( y )  are 

f(0) = f ’ ( O )  = f(1) = f’(1) = 0. (2.6) 
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3. The eigenvalue equation 
We first assume that the diffusive term of (2.5) may be neglected and K set 

equal to zero. Then (2.4) and (2.5) yield the approximate results (see Craik & 
Smith 1968, $5)  

A 

(3.1a, b)  I - Z”f 
u ( u - c ) ’  

m = -,2 - 

( U - ~ ) f ” - E ’ l f =  E’( ; i i -c ) (Ay+B) ,  

where A and B are constants of integration to be determined by the boundary 
conditions. Further, the general solution of (3.1 6 )  is easily shown to be 

f(y) = Qfl(Y) +Df2(Y) +I(Y), 

where fl = u-c, f2 = (u-C)jY[u(y1)-c~-2dyl. 0 

Ay+  gBy2-Bjo’[Z(y l )  -c]-a~R[~(y2)-c12dy2dyl] 0 

Here I is a particular integral of (3 . lb)  and fl, f2 are solutions of the 
associated homogeneous equation. 

The boundary conditions (2.6) determine the constants A ,  B, C, D and yield 
the eigenvalue equation for c, namely 

= (1 - 2c) [ + -lo1 (U - .)-.I; [U(yl) - G I 2  dyldy-J. (3.3) 

If c is real and 0 < c < 1, there is a critical layer at some depth yc in the interval 
0 < y < 1 where c = B(y,). Those integrands of (3.3) which involve negative 
powers of (u - c )  are then singular at y,. When c is real, (3.3) may be rewritten as 

( ( 1 - c)2 [ j (U - c)2 dy - c.] + c2 yc (U - c)2 d y) jol(Z - c)-2 dy 

= jol (Ti - dy - (1 - c)2 + (1 - 2c) (g + jol (U - c,-2j; [G(yl) - c]2dy1dy), (3.4) 

0 

in which only the integral lo1 (Z-c)-2dy (3.5) 

is singular. 

indenting under the singularity a t  y, in the complex y-plane. Thus 
Now it is shown in the following section that this integral may be evaluated by 

where B denotes the principal part of the integral and the subscript c denotes 
evaluation at  ye. But, when c is real, the only imaginary contribution to (3.4) 
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derives from the latter term of (3.6). Consequently, if real values of c are to exist, 
either Ti: is zero or 

However, since U(y)  increases monotonically in the interval (0, l), we have the 
inequalities 

(U - c)2 < c2 (0 < Y < Y c ) ,  

(U-c)2 < (1-c2) (y ,  < y < l) ,  
and itIfollows that theleft-hand side of (3.7) is always negative. Accordingly, (3.7) 
can never be satisfied and we have shown that a necessary condition for the existence 
of a neutral disturbance with 0 < c < 1 is  that U: = 0. A corollary of this result is 
that, if U"(y) is non-zero for all y in the interval (0 ,  l), there can be no neutral dis- 
turbance with 0 < c < 1. (It should be remembered, however, that these results 
hold only within the range of validity of the present approximations.) Clearly, 
when Z;," is non-zero, disturbances must be amplified or damped. In  order to 
determine which is the case, the eigenvalue equation for c must be solved for 
particular velocity profiles G(y). Such an example is discussed in $5.  First, 
however, we must examine the role of diffusion in the vicinity of the critical layer. 

4. The ' diffusive' solutions 
The role of diffusion may not be neglected in the vicinity of the critical layer y,  

where U(y,) equals the phase velocity c. By eliminating i$ between results (2.4) 
and (2 .5 ) ,  we obtain 

where A and B are the constants of integration introduced previously. In  order 
to obtain solutions for f which are valid near y,, we follow the approach of Lin 
(1955, p. 34) and seek two solutions of the form 

It is readily found that the leading term is 
go(y) = constant x ( y -  y,)-%, 

in agreement with the case examined by Lin. Clearly, when (K/a)t  is small, the 
first approximation to the 'diffusive solutions ' f 8 ,  is precisely analogous to that 
for the 'viscous solutions' obtained by Lin. A consequence of this analogy is that 
Lin's arguments concerning the evaluation of integrals such as (3.5) are directly 
applicable. Therefore the appropriate path of integration in the complex y-plane 
is that obtained by indenting under the singularity at  the critical point y,, as was 
done in deriving result (3.6). The results of Lin (1955, $ 8) distinguish between 
regions of the complex y-plane in which inviscid solutions yield a valid first 
approximation and regions where the influence of viscosity cannot be neglected. 
In  the present context, these results show that the role of d i ~ u s i o ~  cannot be 
neglected in that sector of the complex y-plane denoted by 

&r < arg ( y  - 9,) < &r, 

44 Fluid Meoh. 36 
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even in the limit K -+ 0; and that diffusion is also important in a region surround- 
ing the critical point ye with radius of order (K/a)*. 

5. The stability of superposed liquid layers 
We now consider the particular example of plane Couette flow of two super- 

posed liquid layers. This case was examined by Yih (1967)) who discovered an 
instability mechanism which is due to the difference in viscosities of the two 
layers. Yih considered the viscosities of the two liquids to be constant; in which 
case the velocity profiles for plane Couette flow are linear in either liquid, but 
the two layers have different velocity gradients. Accordingly we define Z(y) to be 

(5.1) 

where the interface between the layers is at y = d (0 < d < 1) and the dimension- 
less velocity of the interface is $7 (see figure 1). 

The curvature of this velocity profile is zero everywhere except at the 
interface y = d ;  and, apart from the exceptional case where the critical laycr is 
at y = d,  the condition U: = 0 is satisfied whenever 0 < Re{c} < 1. It follows 
that the necessary condition of 3 3 for the existence of a neutral disturbance with 
0 < c < 1 is satisfied (subject to the condition that inertia terms are negligible). 
On substituting for E(y) in the eigenvalue equation (3.4) and indenting under the 
singularity at  y,., it is found that 

} U(Y) = UYId (0 < y d d )  
= U + ( l - U ) ( y - d ) / ( l - d )  ( d < y <  1) 

2 U ( U - l ) ( U - d )  
- 3u2+2u(1  + d )  + (1 --d)2’ 

c -u=  

which may be shown to agree with result (34) of Yih’s paper. Since c is real, the 
disturbance is neutrally stable to this approximation. 

If the viscosities of the two liquids differ, the dimensionless velocity gradient 
in one layer must exceed unity and that in the other layer must be less than unity. 
Therefore, without loss of generality, we may always choose U and d to be such 
that 0 < Uld c 1, since this simplyrequires the liquid adjacent toy = 0 to be more 
viscous than that adjacent to y = 1.  It follows from result (5.2) that U < c < 1; 
consequently the critical layer yc must lie in the less viscous liquid. 

By including inertia terms which were neglected in the above approximation, 
Yih found a higher approximation for c which has a non-zero imaginary part ci 
whose sign determines the stability of the disturbance. However, at  this point 
we depart from Yih’s treatment and assume that inertia forces remain negligible; 
also, we allow the viscosity of the less viscous liquid to vary slig~ly with depth. 
instead of being strictly constant. Such continuous variation of viscosity 
produces a small curvature of the velocity profile a t  the critical layer; and, 
since E: is no longer zero, the disturbance cannot be neutrally stable. For 
simplicity, we assume that the consequent deviation of the velocity profile from 
that of (5.1) is sufficiently small for result (5.2) to provide a good approximation 
for the real part c, of the phase velocity c. We also assume that the imaginary 
part ci of c is sufficiently small to permit the neglect of terms which are Q( lci12) 
in the eigenvalue equation (3.3). 
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The eigenvalue equation then has real and imaginary parts, the real part of 
which gives result (5.2) with c replaced by c,. The imaginary part yields an 
expression of the form 

ci = (+ii:/;liL3) G( U ,  d,  c,), (5.3) 

where the right-hand side derives from the imaginary contribution to the integral 
(3.6). The function G( U ,  d,  c,) is a complicated algebraic expression which is 
omitted for brevity. Since ii; equals (1 - U ) / (  1 - d )  to good approximation and c, 
is given by result (5.2), values of (c&) may be calculated for particular values of 
U and d .  Since the function G depends only on the velocity profile (5.1), and not 
on the small deviations from it owing to changes in viscosity, the sign of ;liE is 
of crucial importance. 

Values of (ci/iii) were computed by Mr C. D. McArthur for several values of U 
and d ,  and the results are shown in figures 2 (a)  and (b). From these it is seen 
that (ci/U;) is always negative, and that \ci/iiEl is largest when the two liquids 
are of about equal depths and when Uld is about 0.5-0.6. Clearly, the disturbance 
is ampli$ed if iii is negative and damped if ii: is positive. This conclusion is illus- 
trated in figure 1. 

Ti= 1 

y =  1 

y = d  

FIGURE 1. Sketch of flow configuration. 

The above result sheds light on the case of two miscible liquids which, owing to 
molecular diffusion, do not have a sharp interface, but whose velocity profile is still 
close to (5.1) over most of the depth. Because of mixing, the viscosity of the less 
viscous liquid will increase as the ‘interface’ is approached; and this corresponds 
to the case ii: > 0, for which diffusion tends to stabilize the disturbance. However, 
it was pointed out by Yih (1967, p. 351) that, since the critical layer always 
lies at  some distance from the interface, it will fall outside the region in 
which significant viscosity gradients occur. If this is so, Yih’s mechanism for 
instability will be dominant, and the above damping action due to a viscosity 
gradient will be unimportant. Nevertheless, it appears that very small viscosity 
gradients must be regarded as significant. 

To examine the relative importance of the two mechanisms, we combine result 
(5.3) with Yih’s equation (41) to obtain 

ci = aR J(m,, n) + (77iii/GL3) G( U ,  d, c,), (5.4) 
44-2 
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where c, is given by (5.2). Here J(m,, n) is a function of the viscosity ratio m, and 
the depth ratio n of the two liquids; and this function is shown in figures 2 (a), ( b )  
of Yih’s paper for plane Couette flow. As an illustration we consider the special 
case d = 0.5, Uld = 0-1, which, in Yih’s notation, corresponds to n = 1, m1 = 19. 

p3 

2 
X 

8 

6 

4 

2 

‘0 0.2 0.4 0.6 0.8 1.0 
d 

c3 

i 
0 

X 

0.2 0.4 0.6 0.8 1.0 
d 

FIGURE 2 (a) ,  ( 6 ) .  Curves of - ( 2ci/7rTi~) x lo3 ‘us. d for various constant values of U/d.  

From Yih’s figure 2(a ) ,  the appropriate value of J(m,,n) is found to be about 
7.5 x 10-4. This is close to the largest recorded value of J(m,, n) and it therefore 
denotes one of his most unstable configurations. The magnitude of the second 
term of (5.4) is seen from figure 2 (a )  of the present paper to be - (1-057rrUd x 
A comparison of the two terms shows that, when ii: equals about @23aR, the 
destabilizing effect of Yih’s mechanism is balanced by a stabilizing effect due to 
diffusion and the disturbance is neutrally stable. Clearly, since aR is assumed to 
be small, the two mechanisms may be of comparable importance, even for very 
small values of a:. 

I am grateful to Mr C. D. McArthur for performing the numerical computations. 
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